MPEG-COOH接枝多臂星形嵌段共聚物的合成与表征
文献资料:Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery小编:S Aryal,M Prabaharan,S Pilla,S Gong论文微信链接://xueshu.baidu.com/usercenter/paper/show?paperid=d61fdc2f0b9e8919635b549acaef41be&site=xueshu_se结语:Multi-arm star amphiphilic block copolymers (SABCs) with approximately 32 arms were synthesized and characterized for drug delivery applications. A hyperbranched polyester, boltorn~_ H40 (H40), was used as the macroinitiator for the ring-opening polymerization of s-caprolactone (ε-CL). The result_ing multi-arm H40-poly(ε-caprolactone) (H40-PCL-OH) was further reacted with carboxyl terminated methoxy poly(ethylene glycol) (MPEG-COOH) to form H40-PCL-b-MPEG copolymers. The resulting SABCs were characterized by ~1H NMR spectroscopy and gel permeation chromatography (GPC). The critical aggregation concentration (CAC) of H40-PCL-b-MPEG was 3.8 mg/L as determined by fluorescence spec_trophotometry. Below the CAC, stable unimolecular micelles were formed with an average diameter of 18 nm as measured by TEM. Above the CAC, unimolecular micelles exhibited agglomeration with an aver_age diameter of 98 nm. The hydrodynamic diameter of these agglomerates was found to be 122 nm, as measured by dynamic light scattering (DLS). The drug loading efficacy of the H40-PCL-b-MPEG micelles was 26 wt%. Drug release study showed an initial burst followed by a sustained release of the entrapped hydrophobic model drug, 5-fluorouracil, over a period of 9-140 h. These results indicate that the H40- PCL-b-MPEG micelles have great potential as hydrophobic drug delivery carriers.